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Abstract. k-point correlations ofcomplex zerosfor Gaussian ensembles ofrandom polynomials
of order N with real coefficients (GRPRC) are calculated exactly, following an approach of
Hannay [5] for the case of Gaussian random polynomials with complex coefficients (GRPCC).
It is shown that in the thermodynamic limitN → ∞ of Gaussian random holomorphic functions
all the statistics converge to their GRPCC counterparts as one moves off the real axis, while
close to the real axis the two cases are essentially different. Special emphasis is given to one-
and two-point correlation functions in various regimes.

The problem of statistics of zeros of random polynomials of orderN , and of random
holomorphic functions asN → ∞ in general, arises in various contexts in quantum
chaos [2, 3]. The motivation for this work was the problem of statistics of zeros of coherent
state (Husimi) or Bargmann [4] representation of eigenstates of chaotic systems [6, 8]. It has
been conjectured [6] that zeros of Bargmann or Husimi representation of an eigenfunction
of 1-dim classically chaotic system should be uniformly and randomly scattered over the
classically chaotic region of phase space. A Bargmann representation of an eigenstate is
an entire analytic function in a complex phase space variablez = q + ip, sometimes it is
even a polynomial of a finite order, like for example in the case of spin systems where
the phase space manifold is a sphere parametrized by(θ, φ) and z = cot(θ/2) exp(iφ) is
a stereographic projection. The coefficients of a power series of such entire functions or
polynomials are just the coefficients of an expansion of the chaotic eigenstate in a complete
set of (say harmonic) wavefunctions. Applying the random matrix theory one argues that
these coefficients should be uncorrelated (real/complex in the presence/absence of anti-
unitary symmetry) pseudorandom Gaussian variables. Thus one can introduce the statistical
ensembles of random polynomials of orderN (or random analytic functions in the limit
N → ∞) and argue that statistical properties of their zeros can be used as a model to
describe statistical properties of zeros of a Bargman representation of chaotic eigenstates of
real systems.

Recently, Hannay [5] has calculated generalk-point correlation functions of zeros of
a random spin state in a coherent state representation which is described by the random
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polynomial with uncorrelated complex Gaussian coefficients, and solved the problem of
statistics of zeros of GRPCC—Gaussian random polynomials withcomplexcoefficients in
general. It has been demonstrated numerically [7, 9] that his results on GRPCC provide
a universal description of the statistics of zeros of Bargmann or Husimi representation of
chaotic eigenstates for systems without an anti-unitary symmetry. Here we adopt this
approach and solve the general problem of statistics of zeroszk of GRPRC—random
polynomialsf (z) of orderN

f (z) =
N∑

n=0

anz
n = aN

N∏
j=1

(z − zj ) (1)

with real (Gaussian) coefficientsan. We argue that the results obtained may be used to
describe statistics of zeros of eigenstates of 1-dim (and quantum Poincaré sections [8] and
other reductions [10, 11] of 2-dim) chaotic systems in Bargmann representation withtime
reversal invariance(or any other anti-unitary symmetry†) to the same extent as Gaussian
orthogonal ensembles of random matrices can be used to describe the Hamiltonian and the
typical observables.

In the literature one may find several results on the distribution of complex zeros of
random polynomials with either complex [1] or real [12] Gaussian coefficients (see also [3]
and references therein). The formula for the one-point function given below (19) (in the
special case where the variances of all coefficients are equal) is equivalent to theorem 1.1
of Shepp and Vanderbei [12].

Take ak-tuple of complex numbersz = (z1, . . . , zk). Sincean are real Gaussian random
variables (which in general need not be uncorrelated!), their real linear combinations

f r
j = Ref (zj ) f i

j = Im f (zj )

f ′r
j = Re

d

dz
f (zj ) f ′i

j = Im
d

dz
f (zj ) j = 1, . . . , k

(2)

are also real Gaussian random variables with a joint distribution

P(f r , f i , f ′r , f ′i ) = (det 2πM̃)−1/2 exp
(− 1

2(f r , f i , f ′r , f ′i ) · M̃−1(f r , f i , f ′r , f ′i )
)
. (3)

M̃ is a 4k × 4k real symmetric positive covariance matrix

M̃ =


〈f r

j f r
l 〉 〈f r

j f i
l 〉 〈f r

j f ′r
l 〉 〈f r

j f ′i
l 〉

〈f i
j f r

l 〉 〈f i
j f i

l 〉 〈f i
j f ′r

l 〉 〈f i
j f ′i

l 〉
〈f ′r

j f r
l 〉 〈f ′r

j f i
l 〉 〈f ′r

j f ′r
l 〉 〈f ′r

j f ′i
l 〉

〈f ′i
j f r

l 〉 〈f ′i
j f i

l 〉 〈f ′i
j f ′r

l 〉 〈f ′i
j f ′i

l 〉

 =
(

Ã B̃
B̃T C̃

)
(4)

where〈 〉 denotes the Gaussian ensemble averages which can be calculated using (1), (2)
in terms of input data〈anam〉. One can write thek-point correlation functionρk(z) in the
following form

ρk(z) =
∫

P(0, 0, f ′r , f ′i )
k∏

j=1

[(f ′r
j )2 + (f ′i

j )2] df ′r
j df ′i

j (5)

† For a general anti-unitary symmetry, the coefficients of the random polynomials (1) are of the forman = rneiθn

wherern are real Gaussian random variables andθn are fixed (nonrandom) phases (which determine the symmetry
curve in complexz-plane, such as in figure 6 of [3]). Then one may use the same general approach described
below, equations (2)–(13).
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where the factors(f ′r
j )2 + (f ′i

j )2 are just the Jacobians of transformations from the pairs of
real variables(f r

j , f i
j ) to complex variables—zeroszj . The integral can be written in terms

of derivatives of a generating functionZk(u, v)

ρk(z) = (−1)k
k∏

j=1

(∂2
uj

+ ∂2
vj
)Zk(u, v)|u=v=0 (6)

which is an ordinary Gaussian integral and can be explicitly calculated

Zk(u, v) = (det 2πM̃)−1/2
∫

exp
(− 1

2(f ′r , f ′i ) · L̃(f ′r , f ′i ) + if ′r · u + if ′i · v
)

×
k∏

j=1

df ′r
j df ′i

j

= (det 2π Ã)−1/2 exp
(− 1

2(u, v) · L̃(u, v)
)

(7)

where L̃ = C̃ − B̃TÃ−1B̃ is a lower right block ofM̃−1 and we have used an identity [5]
detL̃/ detM̃ = 1/ detÃ. At this point it is convenient to switch on the equivalent complex
variablesf = f r + if i , f ′ = f ′r + if ′i , w = u + iv and their complex conjugates. Then
one can write equations (6), (7) as

ρk(z) = (−1)k2k

(det 2πA)1/2

k∏
j=1

∂wj
∂w∗

j
exp

(− 1
2(w∗, w) · L(w, w∗)

)|w=0

= (det 2πA)−1/2
k∏

j=1

∂wj
∂w∗

j
((w∗, w) · L(w, w∗))k|w=0 (8)

where all the 2k × 2k real matrices should be transformed by the rule

X = U†X̃U U = 1
2

(
1 1
i1 −i1

)
giving L = C − B†A−1B with

A =
( 〈fjf

∗
k 〉 〈fjfk〉

〈f ∗
j f ∗

k 〉 〈f ∗
j fk〉

)
= A† (9)

B =
( 〈fjf

′∗
k 〉 〈fjf

′
k〉

〈f ∗
j f ′∗

k 〉 〈f ∗
j f ′

k〉
)

(10)

C =
( 〈f ′

j f ′∗
k 〉 〈f ′

j f ′
k〉

〈f ′∗
j f ′∗

k 〉 〈f ′∗
j f ′

k〉
)

= C†. (11)

Applying a little combinatorics on (8) we finally obtain the general result

ρk(z) = sper(C − B†A−1B)√
det 2πA

(12)

where we introduce thesemi-permanentof a 2k × 2k matrix

sperL =
jm 6=ln∑

j1<···<jk

l1<···<lk

∑
p∈Sk

k∏
r=1

Ljr+k,lp(r)
. (13)

The first sum runs over(2k)!/(k!)2 ordered combinations ofk out of 2k indices jm and
their complementsln while the second sum runs overk! permutationsp of the symmetric
groupSk. The sum of indicesjr + k should be taken modulo 2k.
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So far we have not assumed anything about the correlations between the coefficientsan

except the Gaussian nature of the joint distribution of coefficientsan. Now we shall assume
that Gaussian coefficientsan are uncorrelated and define the polynomialg(s) with positive
coefficientsbn—the variances ofan

〈anam〉 = bnδnm bn > 0 (14)

g(s) =
N∑

n=0

bns
n. (15)

The matricesA, B, andC can be easily expressed solely in terms of a polynomialg and
its derivativesg′, g′′

Aj l(z) = g(zj z
∗
l ) (16)

Bj l(z) = ∂z∗
l
Aj l(z) = zjg

′(zj z∗
l ) (17)

Cj l(z) = ∂zj ∂z∗
l
Aj l(z) = g′(zj z∗

l ) + zj z
∗
l g

′′(zj z∗
l ) (18)

where we let indicesj, l to run from 1 through 2k and putzk+j := z∗
j . Note that the

time-reversal symmetry—the symmetry of zeros with respect to the reflection over the real
axis—is present also in thek-point correlation functions, namely

ρk(z1, . . . , zj , . . . , zk) = ρk(z1, . . . , z
∗
j , . . . , zk).

Without loss of generality one may assume that all pointszj lie on the upper complex
halfplane, Imzj > 0. Otherwise one gets long-range correlations in cases where one of the
pointszj comes close to the mirror image of one of the other pointsz∗

l .
In general, only the one-point functionρ1(z)—the density of zeros—is simple enough

to be written out

ρ1(z) = g′
0 + |z|2g′′

0

π(g2
0 − g+g−)1/2

+ (z2g−g′
+ + z∗2g+g′

−)g′
0 − |z|2(g′

+g′
− + g′

0
2
)g0

π(g2
0 − g+g−)3/2

(19)

whereg0 ≡ g(|z|2), g+ ≡ g(z2), g− ≡ g(z∗2). Writing z = x + iy and carefully expanding
for small y one finds

ρ1(z) = h(x2)|y| + O(y3) y 6= 0

h(s) = (2π)−1(gg′ − sg′2 + sgg′′)−3/2(2g012 + 2(2g013 − g112 − g022)s

+ (3g122 − 4g113 + g014)s
2 + (g024 − g114 − g033 + 2g123 − g222)s

3)

(20)

where g ≡ g(s), gnml ≡ g(n)(s)g(m)(s)g(l)(s). So quite generally, the density of zeros
decreases linearly as we approach the real axis. To evaluate the density of zeros on a real
axis y = 0 one should use a different approach described in [3]. In another asymptotical
regime|z| → ∞, only the highest power terms ofg contribute, and one finds

ρ1(z) = 2bN−2√
bNbN−1

Im z

|z|6
(

1 + O
(

1

|z|2
))

. (21)

So, the density of zeros vanishes asymptotically since the total number of zerosN is finite.
Now we shall study the thermodynamic limitN → ∞. It is convenient to studyrandom

holomorphic functionswhich provide a uniform distribution of zeros in the complex plane.
A unique choice (up to rescalings → λs) is bn = 1/n! giving

g(s) = exp(s). (22)

Such random holomorphic functions naturally arise when one studies Bargmann
representation of 1-dim chaotic eigenstates in the usual(p, q) ∈ <2 phase space. We argue
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Figure 1. The density of zerosρ1(x + iy) in the thermodynamic limitN → ∞ given by
equation (26) as a function of the distance from the real axis.

that any other choice will only affect the density of zerosρ1(z) while properly rescaled local
statistics should be independent on the choice ofg(s) provided that variances of coefficients
bn depend smoothlyon n.

Far enough away from the real axis Imzj � 1 one may neglect the off-diagonal
k × k blocks of matricesA, B, C since the ratios of the corresponding matrix elements
become exponentially small| exp(zj z∗

l )/ exp(zj zl)| = exp(−2 Imzj Im zl). Then using
straightforward results

2−k sper

(
L11 0
0 LT

11

)
= perL11 :=

∑
p∈Sk

k∏
j=1

Lj,p(j) (23)

det

(
A11 0
0 AT

11

)
= (detA11)

2 (24)

where( )11 denotes the upper-leftk × k block of a 2k × 2k matrix, one arrives at the result
which is equivalent to the statistics of zeros of GRPCC [5]

ρk(z) → ρGRPCC
k (z) = per(C11 − B†

11A−1
11 B11)

detπA11
as Imzj → ∞. (25)

To conclude we give some explicit results about one- and two-point functions. The density
of zeros which is shown in figure 1 reads

ρ1(x + iy) = 1 − (4y2 + 1) exp(−4y2)

π(1 − exp(−4y2))3/2
(26)

which is a constant 1/π provided that we are far enough away from the real axis. The
excess of zeros due to the presence of real axis

∫ ∞
−∞(1/π −ρ1(x + iy)) dy = 1/π is, on the

other hand, just the linear density of real zeros on the real axis!
The two-point correlation functionρ2(z1, z2) is already too lengthy to be written

out in general. The behaviour of a normalized two-point correlation function
ρ2(z1, z2)/ρ1(z1)/ρ1(z2) as we approach the real axis is shown in figure 2, while far away
Im z1, Im z2 � 1 it becomes isotropic and the result for GRPCC [5] applies

ρ2(z1, z2) → ϕ(|z1 − z2|2)

ϕ(s) = exp(−2s)(exp(s) − 1 − s)2 + exp(−s)(exp(−s) − 1 + s)2

π2(1 − exp(−s))3
.

(27)
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Figure 2. The normalized two-point correlation functionρ2(x1+iy, x2+iy)/ρ1(x1+iy)/ρ1(x2+
iy) in the limit N → ∞ between two points,x1 + iy and x2 + iy, which have the same
distance from the real axisy is shown as a function of|x2 − x1| for different values of
y = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5. Note that all curves go to zero as∝ y2 and that for
y > 1.5 the two-point correlation function has practically converged to the isotropic asymptotic
one.

In the asymptotic regime Imzj � 1 one can also calculate thenumber variance62(r): the
variance of the number of zerosN (r) inside a circle of radiusr

62(r) = 〈N 2(r)〉 − 〈N (r)〉2. (28)

It can be expressed in terms of a four-fold integral (overz1, z2) of a two-point correlation,
which can be reduced using equation (27) to a single integral

62(r) = r2(1 − r2) + 8πr4
∫ 1

0

(
arccos

√
t −

√
t (1 − t)

)
ϕ(4r2t) dt. (29)

The number variance62(r) starts as ‘Poissonian’〈N (r)〉 = r2 for small r whereas for
largerr it has a linear asymptotics (see figure 3)

62(r) = σr + O(1/r) ≈ σ
√

〈N (r)〉 σ = 4

π

∫ ∞

0
s2(1 − π2ϕ(s2)) ds ≈ 0.368 47.

(30)

Note that this formula (29), (30) is valid also for GRPCC in general.
In the present paper the statistics of zeros of Gaussian random polynomials with real

coefficients have been solved analytically (12) following an approach of Hannay for the
case of complex coefficients. Several important special cases have been considered in
detail: (i) the case of mutually uncorrelated coefficients, which corresponds to the Bargmann
representation of chaotic eigenstates in the random matrix regime, has been studied and it has
been shown that allk-point correlation functions converge to those of random polynomials
with complex coefficients derived by Hannay as all pointszj , j = 1, . . . , k move away
from the real axis Imzj � 1 (25); (ii) one-point functions—the density of zeros—have
been written out in general (equations (19), (26) and figure 1) and linear decrease of density
towards the symmetry line–real axis has been found (20) (iii) two-point functions close to the
real axis have been explored numerically (figure 2) while the simple analytic formula (27),
which holds far away from the real axis (and holds generally in the case of complex
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Figure 3. The number variance62(r) in the asymptotical regimeN → ∞, Im z � 1 is shown
as a function of the radiusr (29).

coefficients), has been used to derive a simple expression for the number variance of zeros
inside a circle of a given radius (equations (29), (30) and figure 3).
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